Understanding and Quantifying Molecular Flexibility: Torsion Angular Bin Strings

23 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular flexibility is a commonly used, but not easily quantified term. It is at the core of understanding composition and size of a conformational ensemble and contributes to many molecular properties. For many computational workflows, it is necessary to reduce a conformational ensemble to meaningful representatives, however defining them and guaranteeing the ensemble’s completeness is difficult. We introduce the concepts of torsion angular bin strings (TABS) as a discrete vector representation of a conformer’s dihedral angles and the number of possible TABS (nTABS) as an estimation for the ensemble size of a molecule, respectively. Here, we show that nTABS corresponds to an upper limit for the size of the conformational space of small molecules and compare the classification of conformer ensembles by TABS with classifications by RMSD. Overcoming known drawbacks like the molecular size dependency and threshold picking of the RMSD measure, TABS is shown to meaningfully discretize the conformational space and hence allows e.g. for fast checks of the coverage of the conformational space. The current proof-of-concept implementation is based on the ETKDGv3sr conformer generator as implemented in the RDKit and known torsion preferences extracted from small-molecule crystallographic data.

Keywords

Molecular flexibility
Conformational space
Flexibility measure

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Additional details, tables, and figures.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.