Site- and enantioselective allylic and propargylic C-H oxidation enabled by copper-based biomimetic catalysis

22 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Methods for direct, enantioselective oxidation of C(sp3)–H bonds in organic molecules will revolutionize the preparation of chiral alcohols and their derivatives, which are important moieties in natural products, pharmaceuticals and agrochemicals. Enzymatic catalysis, which employs key metal oxides to facilitate efficient hydrogen atom abstraction, has evolved as a highly selective approach for C-H oxidation in biological systems. Despite its effectiveness, reproducing this function and achieving high stereoselectivity in biomimetic catalysts has proven to be a daunting task. Here we present a copper-based mimetic catalytic system that achieves highly efficient asymmetric sp3 C-H oxidation with the C-H substrates as the limiting reagent. An unprecedent Cu(II)-bound tert-butoxy radical is responsible for the site-selective C–H bond cleavage, which resembles the active site of copper-based enzymes for C–H oxidation. The developed allylic and propargylic C-H oxidation reactions have been successfully accomplished with good functional group compatibility and exceptionally high site- and enantioselectivity, and this method is applicable for the late-stage oxidation of bioactive compounds.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.