On the Nature of the Out-Of-Plane Distortions in Subporphyrins

14 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The field of subporphyrins has garnered great interest in recent years owing to its unique structure and associated properties. They exhibit spectroscopic features similar to porphyrins and find applications in various optoelectronic devices, photodynamic therapy etc. Most of the synthesized subporphyrins have boron coordination with an axial ligand and exhibits a bowl-shaped geometry. The first isolation of a stable free-base subporphyrin is achieved recently with mesityl groups at two of the meso positions and anthracene at the other. X-ray studies reveal a markedly non-planar structure different from the bowl shape and is attributed to the steric hindrance of the inner N-H bonds. Herein, we report a systematic quantum chemical investigation assisted by symmetry principles on molecular models to characterize the out-of-plane (OOP) distortions observed so far in subporphyrins and unveil the electronic reasons. Correlation of the frontier molecular orbital (FMO) landscape between the D4h porphyrin and D3h subporphyrin gives insight into their electronic structure relative to one another and the nature of OOP distortions. Further the effect of a π-donor cum σ-acceptor substituent at the meso/beta positions of the subporphyrin ring as well as the impact of boron incorporation in the central cavity on the OOP distortions are also discussed.

Keywords

Subporphyrin
Porphyrin
Gouterman's four orbital model
Out-of-Plane Distortions
Jahn-Teller Effect

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Computational Methodology, additional figures, discussion, optimized coordinates and additional references to prove and justify the results are provided in the supplementary material.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.