Abstract
The Gibbs free energy of an inorganic material represents its maximum reversible work potential under constant temperature and pressure. Its calculation is crucial for understanding material stability, phase transitions, and chemical reactions, thus guiding optimization for diverse applications like catalysis and energy storage. In this study, we have developed a Physics-Informed Neural Network model that leverages the Gibbs free energy equation. The overall loss function is adjusted to allow the model to simultaneously predict all three thermodynamic quantities, including Gibbs free energy, total energy, and entropy, thus transforming it into a multi-output model. In recent literature, there is a growing emphasis on evaluating machine learning models under challenging conditions, such as small datasets and out-of-distribution predictions. Reflecting this trend, we have rigorously benchmarked our model across these scenarios, demonstrating its robustness and adaptability. It turns out that our model demonstrates a 43% improvement for normal scenario and even more in out-of-distribution regime compared to the next-best model.