Abstract
The electrochemical CO2 reduction reaction (CO2RR) has attracted attention as a promising strategy for converting CO2 into value-added products. Gas diffusion electrodes (GDEs) loaded with metallic nanoparticles as electrocatalysts are expected to efficiently reduce CO2 due to the high specific surface area of such particles and the superior mass transport characteristics of GDEs. In the present study, GDEs loaded with homogeneous layers of sub-nanometer gold (Au) nanoparticles were fabricated using a radio frequency sputtering technique that had a low deposition rate. This allowed precise control of the catalyst loading. The Au-loaded GDEs exhibited significantly higher CO production efficiency compared with the electrodes fabricated by conventional deposition methods using dispersed Au nanoparticles. Additionally, a Au-loaded GDE having a catalytic layer thickness of 10 nm demonstrated a mass-based CO production activity of 1882 A g-¹ at -0.85 V. This is the highest value yet reported. This work confirmed that the uniform deposition of sub-nanometer metallic particles gives enhanced catalyst utilization. The results of this research provide important insights into the design of efficient CO2RR electrodes and highlight the potential of radio frequency sputtering to fabricate high-performance CO2RR electrodes as an approach to realizing carbon-neutral technologies.
Supplementary materials
Title
Supporting information
Description
supporting information of the manuscript
Actions