Nanocomposite Hydrogels from Nanodiamonds and a Self-Assembling Tripeptide

08 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the successful assembly of a tripeptide in the presence of nanodiamonds (NDs) into nanocomposite hydrogels. While the presence of NDs does not hinder peptide self-assembly and gelation kinetics are not affected, NDs improve the viscoelastic properties and significantly increase the elastic moduli of the peptide hydrogels. Increased resistance of the gels against applied stress can also be attained depending on the amount of NDs loaded in the nanocomposite. Raman micro-spectroscopy and TEM confirmed the presence of NDs on the surface, and not in the interior, of peptide nanofibers. Peptide-ND non-covalent interactions are also probed by Raman and Fourier-transformed infrared spectroscopies. Overall, this work enables the embedding of NDs into nanocomposite hydrogels formed through the self-assembly of a simple tripeptide at physiological pH, and it provides key insights to open the way for their future applications in biomaterials, for instance exploiting their luminescence and near-infrared responsiveness.

Keywords

nanodiamonds
peptides
gels
nanocomposites
self-assembly

Supplementary materials

Title
Description
Actions
Title
Supplementary data
Description
Spectroscopic data, microscopic data, photographs.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.