Inverse Design of Singlet Fission Materials with Uncertainty-Controlled Genetic Optimization

07 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Singlet fission has shown potential for boosting the power conversion efficiency of solar cells, but the scarcity of suitable molecular materials hinders its implementation. We introduce an uncertainty-controlled genetic algorithm (ucGA) based on ensemble machine learning predictions from different molecular representations that concurrently optimizes excited state energies, synthesizability, and singlet exciton size for the discovery of singlet fission materials. The ucGA allows us to efficiently explore the chemical space spanned by the reFORMED fragment database, which consists of 45,000 cores and 5,000 substituents derived from crystallographic structures assembled in the FORMED repository. Running the ucGA in an exploitative setup performs local optimization on variations of known singlet fission scaffolds, such as acenes. In an explorative mode, hitherto unknown candidates displaying excellent excited state properties for singlet fission are generated. We suggest a class of heteroatom-rich mesoionic compounds as acceptors for charge-transfer mediated singlet fission. When included in larger conjugated donor-acceptor systems, these units exhibit strong localization of the triplet state, favorable diradicaloid character and suitable triplet energies for exciton injection into semiconductor solar cells. As the proposed candidates are composed of fragments from synthesized molecules, they are likely synthetically accessible.

Keywords

singlet-fission
genetic algorithm
machine learning

Supplementary materials

Title
Description
Actions
Title
Supporting Information: Inverse Design of Singlet Fission Materials with Uncertainty-Controlled Genetic Optimization
Description
Supporting Information.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.