Leveraging GPT-4 to transform chemistry from paper to practice

06 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Large Language Models (LLMs) have revolutionized numerous industries as well as accelerated scientific research. However, their application in planning and conducting experimental science, has been limited. In this study, we introduce an adaptable prompt-set with GPT-4, converting literature experimental procedures into actionable experimental steps for a Mettler Toledo EasyMax automated laboratory reactor. Through prompt engineering, we developed a 2-step sequential prompt: the first prompt converts literature synthesis procedures into step-by-step instructions for reaction planning; the second prompt generates an XML script to communicate these instructions to the EasyMax reactor, automating experimental design and execution. We successfully automated the reproduction of three distinct literature-based synthetic procedures and validated the reactions by monitoring and characterizing the products. This approach bridges the gap between text-to-procedure transcription and automated execution and streamline the literature procedure reproduction

Supplementary materials

Title
Description
Actions
Title
Supporting info
Description
Examples and chemical data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.