Enantioselective Dearomatizing Formal (3+3) Cycloadditions of Bicyclobutanes with Aromatic Azomethine Imines: Access to Fused 2,3-Diazabicyclo[3.1.1]heptanes

06 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Although cycloadditions of bicyclobutanes (BCBs) have emerged as a reliable approach for producing bicyclo[n.1.1]alkanes such as azabicyclo[3.1.1]heptanes (aza-BCHeps), serving as saturated bioisosteres of arenes, the catalytic asymmetric variant remains underdeveloped and presents challenges. Herein, we developed several Lewis acid-catalyzed systems for the challenging dearomatizing (3+3) cycloaddition of BCBs and aromatic azomethine imines. This resulted in fused 2,3-diazabicyclo[3.1.1]heptanes, introducing a novel chemical space for the caged hydrocarbons. Moreover, an asymmetric Lewis acid catalysis strategy was devised for the (3+3) cycloadditions of BCBs and N-iminoisoquinolinium ylides, forming chiral diaza-BCHeps with up to 99% yield and 97% ee. This work represents the first successful demonstration of asymmetric (3+3) cycloaddition by introducing a chiral environment through the activation of BCBs.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
General information, reaction optimization, synthesis and analytical data, crystal data of 3po and (R)-3pv, NMR spectra and HPLC charts of products, references
Actions
Title
CCDC 2375376 (for 3po)
Description
supplementary crystallographic data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.