Ionic species representations for materials informatics

05 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

High-dimensional representations of the elements have become common within the field of materials informatics to build useful, structure-agnostic models for the chemistry of materials. However, the characteristics of elements change when they adopt a given oxidation state, with distinct structural preferences and physical properties. We explore several methods for developing embedding vectors of elements decorated with oxidation states. Graphs generated from 110,160 crystals are used to train representations of 84 elements that form 336 species. Clustering these learned representations of ionic species in low-dimensional space reproduces expected chemical heuristics, in particular the separation of cations from anions. We show that these representations have enhanced expressive power for property prediction tasks involving inorganic compounds. We expect that ionic representations, necessary for the description of mixed valence and complex magnetic systems, will support more powerful machine learning models for materials.

Keywords

materials informatics
element representations
ionic representations
machine learning
NLP

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.