When metal complexes evolve, and a minor species is the most active: the case of bis(phenanthroline)copper in the catalysis of glutathione oxidation and hydroxyl radical generation

02 August 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Several copper-ligands, including 1,10-phenanthroline (Phen), have been investigated for anticancer purposes based on their capacity to bind excess Cu in cancer tissues and form redox active complexes able to catalyse the formation of reactive oxygen species (ROS), ultimately leading to oxidative stress and cell death. Glutathione (GSH) is a critical compound as it is highly concentrated intracellularly and can reduce and dissociate copper(II) from the ligand forming poorly redox-active copper(I)-thiolate clusters. Here we report that Cu-Phen2 speciation evolves in physiologically relevant GSH concentrations. Experimental and computational experiments suggest that at pH 7.4 mostly copper(I)-GSH clusters are formed, but a minor species of copper(I) bound to one Phen and forming ternary complexes with GSH (GS-Cu-Phen) is the redox active species, oxidizing quite efficiently GSH to GSSG and forming HO• radicals. This minor active species becomes more populated at lower pH, such as typical lysosomal pH 5, resulting in faster GSH oxidation and HO• production. Consistently, cell culture studies showed lower toxicity of Cu-Phen2 upon inhibition of lysosomal acidification. Overall, this study underscores that sub-cellular localisation can considerably influence the speciation of Cu-based drugs and that minor species can be the most redox- and biologically- active.

Keywords

reactive oxygen species
copper
glutathione
metal-based drugs
anticancer drugs

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Quantitative XAS analysis DFT reaction pathways Control experiments
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.