Metal doping of halide perovskite nanocrystals under ambient conditions

24 July 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Halide perovskite nanocrystals are promising materials for optoelectronic applications. Metal doping provides an avenue to boost their performance further, e.g., by enhancing light emission, or to provide additional functionalities, such as nano-scale magnetism and polarisation control. However, the synthesis of widely size-tuneable nanocrystals with controlled doping levels has been inaccessible using traditional hot injection synthesis, preventing systematic studies on dopant effects device application. Here, we report a versatile synthesis method for metal-doped perovskite nanocrystals with precise control over size and doping concentration under ambient conditions. Our room temperature approach results in fully size-tuneable isovalent doping of CsPbX3 nanocrystals (X = Br, Cl) with various transition metals M2+ tested (M = Mn, Ni, Zn). This gives for the first time access to small, yet precisely doped quantum dots beyond the weak confinement regime reported so far. It also enables a comparative study of the photophysics across multiple size and dopant regimes, where we show dopant-induced localisation to dominate over quantum confinement effects. This generalisable, facile synthesis method thus provides a toolbox for engineering perovskite nanocrystals toward light-emitting technologies under industrially relevant conditions.

Keywords

halide perovskite
nanocrystal
quantum dot
doping

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.