Photothermal Conversion Recycling of Commercial Polystyrene Plastic

23 July 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Photothermal conversion can promote plastic depolymerization (chemical recycling) through light-to-heat conversion. The highly localized temperature gradient on photothermal agent surface allows selective heating with spatial controls not observed with bulk heating. However, identifying practical photothermal agents that are easily incorporated and reusable can be challenging. Interestingly, the rarely recycled black plastics containing carbon black is a potential candidate for photothermal conversion recycling. Herein, we use photothermal conversion to depolymerize commercial polystyrene plastics back into styrene monomers using the pigment in black plastics. Synthesized polystyrene-carbon black composites were depolymerized under white LED light irradiation, producing styrene monomer in up to 60 % yield. We demonstrate the recyclability of monomer and carbon black for a fully circular plastics economy. Ultimately, commercial black polystyrene samples are successfully converted to styrene through photothermal depolymerization without additional additives, with yields up to 70 % under focused solar irradiation in just 5 minutes. Broadly, this sustainable method holds the potential to actualize a closed-loop economy of black plastics.

Keywords

Depolymerization
Photothermal conversion
polystyrene
black plastic
chemical recycling to monomer
polystyrene copolymers
photothermal depolymerization
sustainability
green chemistry
sunlight depolymerization

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials
Description
Experimental procedures and characterization
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.