The Restoring Force Triangle: A Mnemonic Device for Polymer Mechanochemistry

22 July 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In polymer mechanochemistry, mechanophores are specific molecular units within the macromolecular backbone that are particularly sensitive to tension. To facilitate understanding of this selective responsiveness, we introduce the Restoring Force Triangle (RFT). The RFT is a mnemonic device intended to provide intuitive insight into how external tensile forces (i.e., stretching) can selectively activate scissile bonds, thereby initiating mechanically driven chemical reactions. The RFT utilizes two easily computable parameters: the effective bond stiffness constant, which measures a bond’s resistance to elongation, and the bond dissociation energy, which is the energy required to break a bond. These parameters help categorize reactivity into thermal and mechanical domains, providing a useful framework for developing new mechanophores that are responsive to force but thermally stable. The RFT helps chemists intuitively understand how tensile force contributes to the activation of a putative mechanophore, facilitating the development of mechanochemical reactions and mechano-responsive materials.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.