A Bulk vs. Nanoscale Hydrogen Storage Paradox Revealed by Material-System Co- Design

22 July 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Metal hydrides are serious contenders for materials-based hydrogen storage to overcome constraints associated with compressed or liquefied H2. Their ultimate performance is usually evaluated using intrinsic material properties without considering a systems design perspective. An illustrative case with startling implications is (LiNH2+2LiH). Using models that simulate the storage system and associated fuel cell of a light-duty vehicle (LDV), we compared performance of the bulk hydrides with a nanoscaled version in porous carbon, (LiNH2+2LiH)@(6-nm PC). Using experimental material properties, the simulations show that (LiNH2+2LiH)@(6-nm PC) counterintuitively has higher usable gravimetric and volumetric capacities than the bulk counterpart on a system basis despite having lower capacities on a materials-only basis. Nanoscaling increases the thermal conductivity and lowers the desorption enthalpy, which consequently increases heat management efficiency. In a simulated drive cycle for fuel cell- powered LDV, the fuel cell is inoperable using bulk (LiNH2+2LiH) as the storage material but completes the drive cycle using the nanoscale material. These results challenge the notion that nanoscaling incurs mass and volume penalties. Instead, the synergistic nanoporous host-hydride interaction can favorably modulate chemical and heat transfer properties. Moreover, a co-design approach considering application- specific tradeoffs is essential to accurately assess a material’s potential for real-world hydrogen storage.

Keywords

metal hydride
hydrogen storage
lithium amide
porous carbon
nanoscale materials
system design

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.