Diastereomeric Configuration Drives an On-Surface Specific Rearrangement into Low Bandgap Non-Benzenoid Graphene Nanoribbons.

17 July 2024, Version 1

Abstract

Stereochemistry, usually associated to the three-dimensional arrangement of atoms in molecules, is crucial in processes like life functions, drug action, or molecular reactions. This three-dimensionality typically originates from sp3 hybridization in organic molecules, but it is also present in out-of-plane sp2-based molecules as a consequence of helical structures, twisting processes, and/or the presence of non-benzenoid rings, the latter significantly influencing their global stereochemistry and leading to the emergence of new exotic properties. In this sense, on-surface synthesis methodologies provide the perfect framework for the precise synthesis and characterization of organic systems at the atomic scale, allowing for the accurate assessment of the associated stereochemical effects. In this work, we demonstrate the importance of the initial diastereomeric configuration in the surface-induced skeletal rearrangement of a substituted cyclooctatetraene (COT) moiety–a historical landmark in the understanding of aromaticity–into a cyclopenta[c,d]azulene (CPA) one in a chevron-like graphene nanoribbon (GNR). These findings are evidenced by combining bond-resolved scanning tunneling microscopy with theoretical ab-initio calculations. Interestingly, the major well-defined product, a CPA chevron-like GNR, exhibits the lowest bandgap reported to date for an all-carbon chevron-like GNR, as evidenced by scanning tunneling spectroscopy measurements. This work paves the way for the rational application of stereochemistry in the on-surface synthesis of novel graphene-based nanostructures.

Keywords

Stereochemistry
Configuration
On-Surface Synthesis
Non-Benzenoid Rings
Chevron-like GNR
Bandgap Engineering
Au Adatom
Quantum-Mechanical Calculations
Scanning Probe Microscopy.

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials
Description
Supplementary Materials
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.