Fundamentally Intertwined: Anharmonic Intermolecular Interactions Dictate Both Thermal Expansion and Terahertz Lattice Dynamics in Molecular Crystals

04 July 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We investigate the anisotropic thermal expansion behavior of a co-crystalline system composed of 4,4’-azopyridine and trimesic acid (TMA-azo). Using variable-temperature single-crystal X-ray diffraction (SC-XRD), low-frequency Raman spectroscopy, and terahertz time-domain spectroscopy (THz-TDS), we observe significant temperature-induced shifting and broadening of the vibrational absorption features, indicating changes in the intermolecular potential and dynamics. Our findings reveal that thermal expansion is driven by anharmonic interactions and the potential energy topography, rather than increased molecular dynamics. Density functional theory (DFT) simulations support these results, highlighting significant softening of the potential energy surface (PES) with temperature. This comprehensive approach offers valuable insights into the relationship between structural dynamics and thermal properties, providing a robust framework for designing materials with tailored thermal expansion characteristics.

Keywords

potential energy
dft
density functional theory
raman
terahertz
ir

Supplementary materials

Title
Description
Actions
Title
ESI
Description
Structure, experimental methods, peak fitting data, DFT-simulated list of vibrational modes.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.