Extracellular vesicles of different cellular origin feature distinct biomolecular corona dynamics

24 June 2024, Version 4

Abstract

Initially observed on synthetic nanoparticles, biomolecular corona existence and role in determining nanoparticle identity and function are now beginning to be acknowledged in biogenic nanoparticles, particularly in extracellular vesicles. We have developed here a methodology based on Fluorescence Correlation Spectroscopy to track biomolecular corona formation on extracellular vesicles derived from red blood cells and placental mesenchymal stromal cells when these vesicles are dispersed in human plasma. The methodology allows for the study of corona dynamics in situ in physiological conditions. Results evidence that the two extracellular vesicle populations feature distinct corona dynamics, with red blood cell-derived extracellular vesicles exchanging a higher number of proteins. These findings indicate that the dynamics of the biomolecular corona may ultimately be linked to the cellular origin of the extracellular vesicles, revealing an additional level of heterogeneity, and possibly of bionanoscale identity, that characterizes circulating extracellular vesicles.

Keywords

extracellular vesicles
Fluorescence correlation spectroscopy
Biomolecular corona

Supplementary materials

Title
Description
Actions
Title
Supplementary materials for the manuscript
Description
This file contains extended materials and methods for the experiments described in the main text of the manuscript.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.