Enantioselective Decarboxylative C(sp3)-C(sp3) Cross-Coupling of Aliphatic Acids with gem-Borazirconocene Alkanes

13 June 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Asymmetric decarboxylative cross-couplings of carboxylic acids represent a powerful tool to synthesize chiral building blocks for medicinal chemistry and material science. However, synthesis of versatile chiral alkylboron derivatives via asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling from readily available primary aliphatic acids and mild organometallic reagents is still challenging. In this study, we report a visible-light-induced, Ni-catalyzed enantioconvergent C(sp3)-C(sp3) cross-coupling of unactivated primary aliphatic acids with gem-borazirconocene alkanes, furnishing a diverse array of valuable chiral alkylboron building blocks. The broad substrate scope, high functional group tolerance, and the late-stage modification of complex drug molecules and natural products with high enantioselectivity demonstrate the synthetic potential of the method. Mechanistic investigations suggest an enantioconvergent radical-radical cross-coupling pathway, wherein the primary radical from carboxylic acids is generated through single-electron reduction with ZrIII species, representing an unprecedented example of enantioselective radical C(sp3)-C(sp3) cross coupling in the absence of photocatalysts.

Keywords

decarboxylation
alkylzirconocenes
C(sp3)-C(sp3) cross-coupling
chiral alkylboron derivatives

Supplementary materials

Title
Description
Actions
Title
supporting information-general procedure
Description
The general procedure of products synthesis and mechanism investigation information.
Actions
Title
supporting information-NMR
Description
The NMR spectroscopy of all synthesized products
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.