Simulating Solid-State Battery Cathode Manufacturing via Wet-Processing with Resolved Active Material Geometries

12 June 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Prior to the development of a solid-state battery cell, researchers have limited knowledge about the microstructure of the electrodes and how they are affected by manufacturing. Therefore, numerical simulations can be considered as a powerful tool to link the fabrication process to the final microstructure of the electrode. In this paper, a numerical simulation of a wet-processed solid-state battery cathode with a formulation of 75 % LiNi9Mn0.5Co0.5O2 (NMC), 17.5 %LPSCl, 5 % Timcal C65 and 2.5 % Polyisobutene (PIB) is presented. From nano-computed tomography images, realistic shapes of active material particles are extracted and used in the simulation, which is well-calibrated to experimental data. In particular, we study the effects of calendering on the microstructure of the simulated cathode and deduce structure-property relations.

Keywords

All solid state batteries
Electrode manufacturing
Discrete Element Method

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.