A Bio-inspired Dendritic MoOx Electrocatalyst for Efficient Electrochemical Nitrate Reduction to Ammonia

29 May 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Drawing inspiration from the nitrate reductase enzymes, which catalyze nitrate to nitrite in nature, here we introduce a bio-inspired, reduced molybdenum oxide (MoOx) shell that is grown on top of a dendritic nickel foam core (NiNF). The resulting MoOx/NiNF material is prepared via a facile, two-step electrodeposition strategy using commercially available, low-cost precursors. This catalytic material displays a remarkable faradaic efficiency (FE) of 99% at −0.5 V vs. RHE and a high ammonia (NH3) yield rate of up to 4.29 mmol h−1 cm−2 at −1.0 V vs. RHE in neutral media. Most importantly, MoOx/NiNF exhibits exceptional stability for the nitrate reduction reaction (NO3RR), maintaining operation for over 3,100 hours at a high current density of −650 mA cm−2, with a yield rate of 2.6 mmol h−1 cm−2 and a stable average NH3 FE of ~83%. We show, through combined XPS and in-situ Raman spectroscopy, that the pronounced affinity of MoOx/NiNF for nitrate is associated with a substantial presence of oxygen vacancies within the material.

Keywords

Bio-inspired
Core-Shell
Reduced molybdenum oxide
Oxygen vacancies
Electrocatalyst
Nitrate Reduction

Supplementary materials

Title
Description
Actions
Title
Supplementary materials
Description
Experimental Details, Electrode preparation, Material characterization, Electrochemical measurements, In Situ Raman measurements, Isotope labeling experiments, Control experiments, Quantification of Products, Supporting Figures and Tables
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.