Large Language Models as Molecular Design Engines

21 May 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The design of small molecules is crucial for technological applications ranging from drug discovery to energy storage. Due to the vast design space available to modern synthetic chemistry, the community has increasingly sought to use data-driven and machine learning approaches to navigate this space. Although generative machine learning methods have recently shown potential for computational molecular design, their use is hindered by complex training procedures, and they often fail to generate valid and unique molecules. In this context, pre-trained Large Language Models (LLMs) have emerged as potential tools for molecular design, as they appear to be capable of creating and modifying molecules based on simple instructions provided through natural language prompts. In this work, we show that the Claude 3 Opus LLM can read, write, and modify molecules according to prompts, with an impressive 97% valid and unique molecules. By quantifying these modifications in a low-dimensional latent space, we systematically evaluate the model’s behavior under different prompting conditions. Notably, the model is able to perform guided molecular generation when asked to manipulate the electronic structure of molecules using simple, natural-language prompts. Our findings highlight the potential of LLMs as powerful and versatile molecular design engines.

Keywords

large language models
molecular design
computational chemistry
quantum chemistry
parametric method 7 (pm7)
SMILES

Supplementary materials

Title
Description
Actions
Title
Supplementary Information (SI) for “Large Language Models as Molecular Design Engines”
Description
Supplementary Information (SI) of the paper, having additional metrics that were recorded and supporting figures to accompany the primary manuscript.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.