Alkene Isomerization using a Heterogeneous Nickel-Hydride Catalyst

13 May 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Transition metal-catalyzed alkene isomerization is an enabling technology used to install an alkene distal to its original site. Due to their well-defined structure, homogeneous catalysts can be fine-tuned to optimize reactivity, stereoselectivity, and positional selectivity, but they often suffer from instability and non-recyclability. Heterogeneous catalysts are generally highly robust but continue to lack active-site specificity and are challenging to rationally improve through structural modification. Known single-site heterogeneous catalysts for alkene isomerization utilize precious metals and bespoke, expensive, and synthetically intense supports. Additionally, they generally have mediocre reactivity, inspiring us to develop a heterogeneous catalyst with an active site made from readily available compounds made of Earth-abundant elements. Previous work demonstrated that a very active homogeneous catalyst is formed upon protonation of Ni[P(OEt)3]4 by H2SO4, generating a [Ni–H]+ active site. This catalyst is incredibly active, but also decomposes readily, which severely limits its utility. Herein we show that by using a solid acid (sulfated zirconia, SZO300), not only is this de-composition prevented, but high activity is maintained, improved selectivity is achieved, and a broader scope of functional groups is tolerated. Preliminary mechanistic experiments suggest that the catalytic reaction likely goes through an intermolecular, two-electron pathway. A detailed kinetic study comparing the state-of-the-art Ni and Pd isomerization catalysts reveals that the highest activity and selectivity is seen with the Ni/SZO300 system. The reactivity of Ni/SZO300, is not limited to alkene isomerization; it is also a competent catalyst for hydroalkenylation, hydroboration, and hydrosilylation, demonstrating the broad application of this heterogeneous catalyst.


single-site catalyst
alkene isomerization

Supplementary materials

Supporting Information
Contains synthetic and catalytic procedures, characterization data, and data from reaction monitoring.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.