Chemography-guided analysis of a reaction path network for ethylene hydrogenation with a model Wilkinson’s catalyst

13 May 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Visualization and analysis of large chemical reaction networks become rather challenging when conventional graph-based approaches are used. As an alternative, we propose to use the chemical cartography (“chemography”) approach, describing the data distribution on a 2-dimensional map. Here, the Generative Topographic Mapping (GTM) algorithm – an advanced chemography approach – has been applied to visualize the reaction path network of a simplified Wilkinson’s catalyst-catalyzed hydrogenation containing some 105 structures generated with the help of the Artificial Force Induced Reaction (AFIR) method using either Density Functional Theory or Neural Network Potential (NNP) for potential energy surface calculations. Using new atoms permutation invariant 3D descriptors for structure encoding, we’ve demonstrated that GTM possesses the abilities to cluster structures that share the same 2D representation, to visualize potential energy surface, to provide an insight on the reaction path exploration as a function of time and to compare reaction path networks obtained with different methods of energy assessment.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.