Abstract
Regioselective C-H bond functionalization is pivotal in modern scientific exploration, offering solutions for achieving novel synthetic methodologies and pharmaceutical development. In this aspect, achieving alternative regioselective functionalization, like para-selective products in electron-poor aromatics, diverges from traditional methods. Leveraging the advantages of atomically dispersed photocatalysts, we designed a robust photocatalyst for an unconventional regioselective aromatic C–H bond functionalization. This innovation enabled para-selective trifluoromethylations of electron-deficient meta-directing aromatics (-NO2, -CF3, -CN, etc.), which is entirely orthogonal to the traditional approaches. Mechanistic experiments and DFT analysis confirmed the interaction between Cu-metal and the aromatic substrate, alongside the photocatalyst's molecular arrangement, driving selective exposure of the para-selective functionalization. This strategic approach elucidated pathways for precise molecular transformations, advancing the frontier of regioselective C–H bond functionalization by using atomically dispersed photocatalysts in organic synthesis.
Supplementary materials
Title
An Atomically Dispersed Photocatalyst for para-Selective C-H bond Functionalization of Electron-Poor Arenes
Description
Regioselective C-H bond functionalization is pivotal in modern scientific exploration, offering solutions for achieving novel synthetic methodologies and pharmaceutical development. In this aspect, achieving alternative regioselective functionalization, like para-selective products in electron-poor aromatics, diverges from traditional methods. Leveraging the advantages of atomically dispersed photocatalysts, we designed a robust photocatalyst for an unconventional regioselective aromatic C–H bond functionalization. This innovation enabled para-selective trifluoromethylations of electron-deficient meta-directing aromatics (-NO2, -CF3, -CN, etc.), which is entirely orthogonal to the traditional approaches. Mechanistic experiments and DFT analysis confirmed the interaction between Cu-metal and the aromatic substrate, alongside the photocatalyst's molecular arrangement, driving selective exposure of the para-selective functionalization. This strategic approach elucidated pathways for precise molecular transformations, advancing the frontier of regioselective C–H bond functionalization by using atomically dispersed photocatalysts in organic synthesis.
Actions