Controlling carbodiimide-driven reaction networks through the reversible formation of pyridine adducts

30 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Carbodiimide-driven anhydride formation from carboxylic acids is useful in a variety of non-equilibrium systems. While multiple strategies to control deactivation rates (anhydride hydrolysis) have been reported, control over activation rates (anhydride formation) is currently limited. We show that pyridines reversibly form adducts with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide methiodide in water. These adducts are unreactive with carboxylic acids and thus reduce the anhydride formation rate while prolonging carbodiimide lifetime. The best results are obtained with 4-methoxypyridine. This strategy can be used to control the formation of transient polymer network hydrogels, in one example increasing the time to reach peak modulus by 86% and the lifetime by 43%.

Keywords

carbodiimides
nonequilibrium assembly
systems chemistry
reaction networks

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Experimental details, supporting experiments and figures
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.