Site-Specific Template Generative Approach for Retrosynthetic Planning

25 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Retrosynthesis, the strategy of devising laboratory pathways for small molecules by working backwards from the target compound, remains a rate limiting step in multi-step synthesis of complex molecules, particularly in drug discovery. Enhancing retrosynthetic efficacy requires overcoming the vast complexity of chemical space, the limited known interconversions between molecules, and the challenges posed by limited experimental datasets. In this study, we introduce generative machine learning methods for retrosynthetic planning that generate reaction templates. Our approach features three key innovations. First, the models generate complete reactions, known as templates, instead of reactants or synthons. Through this abstraction, novel chemical transforms resembling those in the training dataset can be generated. Second, the approach optionally allows users to select the specific bond or bonds to be changed in the proposed reaction, enabling human interaction to influence the synthetic approach. Third, one of our models, based on the conditional kernel-elastic autoencoder (CKAE) architecture, employs a latent space to measure the similarity between generated and known reactions, providing insights into their chemical viability. Together, these features establish a coherent framework for retrosynthetic planning, as validated by our experimental work. We demonstrate the application of our machine learning methodology to design a synthetic pathway for a simple yet challenging small molecule of pharmaceutical interest. The pathway was experimentally proven viable through a 3-step process, which compares favorably to previous 5-9 step approaches. This improvement demonstrates the utility and robustness of the generative machine learning approaches described herein and highlights their potential to address a broad spectrum of challenges in chemical synthesis.


Reaction Template
Generative Model


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.