Synthesis of Ti1-xWx Solid Solution MAX Phases and Derived MXenes for Sodium-Ion Battery Anodes

22 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

One of the distinguishing features of MAX phases and their MXene derivatives is their remarkable chemical diversity. This diversity, coupled with the two-dimensional nature of MXenes, positions them as outstanding candidates for a wide range of electrochemical applications. In this study, we report the synthesis of M site T1-xWx solid solution MAX phases, specifically (Ti1-xWx)2AlC and (Ti1-xWx)3AlC2. The 211-type phase exhibited a disordered solid solution, whereas the 312-type phase displayed a more ordered structure, resembling an o-MAX arrangement, with W atoms preferentially occupying the outer planes. This specific ordering in the 312-type MAX phase is attributed to the unique electronic structure and atomic radius of W, indicating that these characteristics are crucial for the preferential occupation of the outer planes. Moreover, corresponding solid-solution MXenes, Ti2.4W0.6C2Tz and Ti1.6W0.4CTz, were synthesized via selective etching of MAX powder precursors containing 20% W. These MXenes were evaluated as sodium-ion battery anodes, with Ti1.6W0.4CTz showing exceptional capacity, outperforming existing multilayer MXene chemistries. This work not only demonstrates the successful integration of W in meaningful quantities into a double transition metal solid solution MAX phase, but also paves the way for the development of cost-effective MXenes containing W. Such advancements significantly widen their application spectrum by fine-tuning their physical, electronic, mechanical, electrochemical, and catalytic properties.

Keywords

Tungsten
Solid-solution
MAX phases
MXenes
o-MAX
Sodium-ion batteries

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Supplementary information
Actions
Title
CIF Files
Description
CIF Files
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.