Optimum Model-Based Design of Diagnostics Experiments (DOE) with Hybrid Pulse Power Characterization (HPPC) for Lithium-Ion Batteries

15 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Diagnostics of lithium-ion batteries are frequently performed in battery management systems for optimized operation of lithium-ion batteries or for second-life usage. However, attempting to extract dominant degradation information requires long rest times between diagnostic pulses, which compete with the need for efficient diagnostics. Here, we design a set of efficient optimal hybrid pulse power characterization (HPPC) diagnostics using model-based design of experiment (DOE) methods, applying knowledge of degradation effects on pulse kinetics and cell properties. We validate that these protocols are effective through minimization of uncertainty, and robust with Markov Chain Monte Carlo (MCMC) simulations. Contrary to traditional HPPC diagnostics which use fixed pulse magnitudes at uniformly distributed state of charges (SOC), we find that well-designed HPPC protocols using our framework outperform traditional protocols in terms of minimizing both parametric uncertainties and diagnostic time. Trade-offs between minimizing parametric uncertainty and total diagnostic time can be made based on different diagnostics needs.


lithium-ion batteries
parameter estimation


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.