Monomer Architecture as a Mechanism to Control the Self-Assembly of Oligomeric Diblock Peptide-Polymer Amphiphiles

08 April 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Diblock oligomeric peptide-polymer amphiphiles (PPAs) are biohybrid materials that offer versatile functionality by integrating the sequence-dependent properties of peptides with the synthetic versatility of polymers. Despite their potential as biocompatible materials, the rational design of PPAs for assembly into multi-chain nanoparticles remains challenging due to the complex intra- and intermolecular interactions emanating from the polymer and peptide segments. To systematically explore the impact of monomer architecture on nanoparticle assembly, PPAs were synthesized with a random coil peptide (XTEN2) and oligomeric alkyl acrylates with unique side chains: ethyl, tert-butyl, n-butyl, and cyclohexyl. Experimental characterization using electron and atomic force microscopies demonstrated that tail hydrophobicity impacted accessible morphologies. Moreover, characterization of different assembly protocols (i.e., bath sonication and thermal annealing) revealed that certain tail architectures provide access to kinetically trapped assemblies. All-atom molecular dynamics simulations of micelle structure formation unveiled key interactions and differences in hydration states, dictating PPA assembly behavior. These findings highlight the complexity of PPA assembly dynamics and serve as valuable benchmarks to guide the design of PPAs for a variety of applications including catalysis, mineralization, targeted sequestration, antimicrobial activity, and cargo transportation

Keywords

biomimetic
peptide-polymer amphiphile
molecular dynamics simulations

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Characterization of polymers, amphiphiles, TEM/AFM/Cryo Images, and computational details
Actions
Title
Water Dynamics Video
Description
Water (red) moving into and out of a representative PPA hydrophobic core (yellow), otBA5-XTEN2
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.