Electrocatalytic CO2 Reduction on Amorphous Cu Surfaces: Unveiling Structure-Activity Relationships

08 April 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Amorphous materials hold significant promise for enhancing electrocatalytic CO2 reduction (CO2R) performance, but their intricate structures present challenges in understanding their behaviour. We present a computational investigation combining machine learning force fields and DFT calculations to explore amorphous copper (Cu) as a potential catalyst for the CO2R to C1 and C2 products. Our study reveals that amorphous Cu surfaces, compared to crystalline counterparts, offer a wider range of coordination sites, leading to a multitude of active centres for CO2 adsorption. Notably, some investigated surfaces spontaneously activate CO2, demonstrating their potential for efficient conversion. Furthermore, the intermediates of the CO2R on these surfaces exhibit enhanced stability, translating to lower overpotentials and improved selectivity. This work paves the way for further research and development in using amorphous Cu-based catalysts for sustainable CO2 conversion technologies, offering significant potential for mitigating climate change.

Keywords

electrochemical CO2 conversion
Machine learning forcefield
Denisty functional theory

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary material for “Electrocatalytic CO2 Reduction on Amorphous Copper: Unveiling Structure-Activity Relationships”
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.