Native cryo-correlative light and synchrotron X-ray fluorescence imaging of proteins and essential metals in developing neurons

28 March 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Essential metals such as iron, copper and zinc are required for a wide variety of biological processes. For example, they act as cofactors in many proteins, conferring enzymatic activity or structural stability. Interactions between metals and proteins are often difficult to characterize due to the low concentration of metals in biological tissues and the sometimes labile nature of the chemical bonds involved. To better understand the cellular functions of essential metals, we correlate protein localization, using fluorescence light microscopy (FLM), and metal distribution with synchrotron X-ray fluorescence (SXRF), a high-sensitivity and high-spatial-resolution technique for metal imaging. Both chemical imaging modalities are implemented under cryogenic conditions to preserve native cell structure and chemical element distribution. As a proof of concept, we applied cryo-FLM and cryo-SXRF correlative imaging to cultured primary hippocampal neurons. Neurons were labeled under live conditions with fluorescent F-actin and tubulin dyes, then samples were flash-frozen and observed in a frozen hydrated state. This methodology, cryo-FLM combined to cryo-SXRF, revealed the distribution of iron, copper and zinc relative to F-actin and tubulin in the growth cones, dendrites, axons, and axonal en passant boutons of developing neurons.

Keywords

synchrotron x ray fluorescene
metals
proteins
native imaging
cryo-fluorescence microscopy
neurons
growth cones

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.