Abstract
The rapid development of light-activated organic photoredox catalysts has led to the proliferation of powerful synthetic chemical strategies with industrial and pharmaceutical applications. Despite the advancement in synthetic approaches, a detailed understanding of the mechanisms governing these reactions has lagged. Time-resolved optical spectroscopy provides a method to track organic photoredox catalysis processes and reveal the energy pathways that drive reaction mechanisms. These measurements are sensitive to key processes in organic photoredox catalysis such as charge or energy transfer, lifetimes of singlet or triplet states and solvation dynamics. The sensitivity and specificity of ultrafast spectroscopic measurements can provide a new perspective on the mechanisms of these reactions, including electron-transfer events, the role of solvent, and the short lifetimes of radical intermediates.