Abstract
Oil sands process-affected water (OSPW), generated by surface mining in Canada’s oil sands, require treatment of environmentally persistent dissolved organic compounds before release to the watershed. Conventional chemical and mechanical treatments have not proved suitable for treating the large quantities of stored OSPW, and the biological recalcitrance of some dissolved organics may not be adequately addressed by conventional passive treatment systems. Previous work has evaluated photocatalytic treatment as a passive advanced oxidation process (P-AOP) for OSPW remediation. This work expands upon this prior research to further characterize the effects of water chemistry on the treatment rate and detoxification threshold. Under artificial sunlight, buoyant photocatalysts (BPCs) detoxified all OSPW samples within 1 week of treatment time with simultaneous treatment of polycyclic aromatic hydrocarbons, naphthenic acid fraction components (NAFCs), and un-ionized ammonia. Overall, these results further demonstrate passive photocatalysis as an effective method for treatment of OSPW contaminants of potential concern (COPCs).
Supplementary materials
Title
Supplementary Information
Description
photo & schematic of experimental apparatus; analytical methodology; table of initial OSPW toxicology and water chemistry; plots of treatment control tests, trace element treatment results
Actions