Shallow Rate-Overpotential Scaling in Aqueous Molecular Oxygen Reduction Electrocatalysis Across a Family of Iron Macrocycles

22 March 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Rate-overpotential scaling relationships have been employed widely to understand trends in oxygen reduction reaction (ORR) electrocatalysis by dissolved metal macrocycles in organic electrolytes. Similar scaling relationships remain unknown for surface-adsorbed ORR electrocatalysts in the acidic aqueous environments germane to proton-exchange membrane (PEM) fuel cells. Herein, we examine ORR catalysis in aqueous perchloric acid media for a structurally diverse array of iron macrocycle complexes adsorbed on Vulcan carbon black. The macrocycles encompass Fe–N4, Fe–N2N′2 and Fe–NxC4−x motifs bearing pyrrolic, pyridinic, and N-heterocyclic carbene (NHC) moieties in the primary ligation sphere, giving rise to a 530 mV range in Fe(III/II) redox potentials, EFe(III/II). Experimental Tafel data in the micropolarization regime were extrapolated to the EFe(III/II) to furnish estimated TOF values that span ~3 orders of magnitude across the family of compounds. Despite the structural diversity of this family of compounds, extrapolated TOF values correlate with Fe(III/II) redox potentials in a roughly log-linear fashion with a shallow scaling factor of approximately 180 mV/decade. These findings highlight that negative shifts in EFe(III/II) lead to diminishing returns in catalytic rate promotion and suggest that changes to the primary ligating environment in a macrocycle are insufficient to break fundamental rate-overpotential scaling relationships in aqueous ORR catalysis. Together these studies motivate the development of new higher-potential iron complexes that employ motifs beyond the equatorial ligation plane to enhance ORR catalysis.

Keywords

Oxygen Reduction
Scaling Relationships
Iron Macrocycles

Supplementary materials

Title
Description
Actions
Title
Supporting Information for "Shallow Rate-Overpotential Scaling in Aqueous Molecular Oxygen Reduction Electrocatalysis Across a Family of Iron Macrocycles"
Description
Supporting Information Document
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.