Development of a practical in silico method for predicting compound brain concentration-time profiles in mice: combination of modeling and machine learning simulation

20 March 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Given the aging populations in advanced countries globally, many pharmaceutical companies have focused on developing central nervous system (CNS) drugs. However, due to the blood-brain barrier, drugs do not easily reach the target area in the brain. Although conventional screening methods for drug discovery involve the measurement of (unbound fraction of drug) brain-to-plasma partition coefficients, it is difficult to consider non-equilibrium between plasma and brain compound concentration-time profiles. To truly understand the pharmacokinetics/pharmacodynamics of CNS drugs, compound concentration-time profiles in the brain are necessary; however, such analyses are costly, time consuming, and require a significant number of animals. Therefore, in this study, we attempted to develop an in silico prediction method that does not require a large amount of experimental data by combining modeling and simulation (M&S) with machine learning (ML). First, we constructed a hybrid model linking plasma concentration-time profile to the brain compartment that takes into account the transit time and brain distribution of each compound. Using mouse plasma and brain time experimental values for 103 compounds, we determined the brain kinetic parameters of the hybrid model for each compound; this case was defined as scenario I (a positive control experiment) and included the full brain concentration-time profile data. Next, we built an ML model using chemical structure descriptors as explanatory variables and rate parameters as the target variable, and we then input the predicted values from 5-fold cross-validation (CV) into the hybrid model; this case was defined as scenario II, in which no brain compound concentration-time profile data exist. Finally, for scenario III, assuming that the brain concentration is obtained at only one time point, we used the brain kinetic parameters from the result of the 5-fold CV in scenario II as the initial values for the hybrid model and performed parameter re-fitting against the observed brain concentration at that time point. As a result, the RMSE/R2-values of the brain compound concentration-time profiles over time were 0.445/0.517 in scenario II and 0.246/0.805 in scenario III, indicating the method provides high accuracy and suggesting that it is a practical method for predicting brain compound concentration-time profiles.


mouse pharmacokinetics
compound brain concentration-time profiles
machine learning
random forest
modeling and simulation
PK parameters
compound design


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.