Metal–Ligand Redox in Layered Oxide Cathodes for Li-ion Batteries

18 March 2024, Version 1

Abstract

Understanding charge compensation in Li-ion battery cathodes is crucial for improving specific capacity and cycle life. This study clarifies some of the ambiguities and inaccuracies of the commonly used ionic-bonding model that requires separate transition metal (TM) and oxygen redox regimes, using an archetypal layered oxide cathode, LiNi0.8Mn0.1Co0.1O2. Contrary to the prevalent TM-centric ionic model, this research reveals that charge compensation upon Li removal occurs without formal Ni oxidation. Instead, oxygen dominates the redox process, facilitated by strong TM–O hybridisation, forming bulk stable 3d8L and 3d8L2 electronic states, where L is a ligand hole. This model supports the observation of O K-edge resonant inelastic X-ray scattering features, often attributed to bulk O–O dimers, irrespective of the state of delithiation. Furthermore, there is no evidence of any crystallographic TM migration or void formation. Above 4.34 V vs. Li+/Li, the cathode loses surface O, forming a resistive surface rock salt layer that eventually causes capacity fade. This highlights the importance of cathode engineering when attempting to achieve higher energy densities with layered oxide cathodes where O dominates the charge compensation process.

Keywords

O-Redox
Ligand Holes
Charge Compensation
Ni-rich Cathodes
NMC811
XAS
RIXS
SAXS

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
XRD analysis of pristine NMC811, Electrochemical data for LCO, relevant hard and soft XAS data, High-resolution RIXS data, Operando EXAFS data, XRD data for LCO and Li-rich NMC
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.