Using non-adiabatic excitation transfer for signal transmission between molecular logic gates

15 March 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular logic gates (MLG) are molecules which perform logic operations. Their integration into a computing system is a very difficult task which remains to be addressed. The problem lies in the field of signal exchange between the gates within the system. We propose using non-adiabatic excitation transfer between the gates to address this problem while absorption and fluorescence are left to communicate with external devices. Excitation transfer was studied using the modified Bixon-Jortner- Plotnikov theory on the example of the 3H-thioxanthene-TTF-dibenzo-BODIPY covalently linked triade. Several designs of the molecule were studied in vacuum and cyclohexane. It was found that the molecular logic system has to be planar and rigid to isolate radiative interfaces from other gates. Functioning of these gates is based on dark πσ∗-states in contrast to bright ππ∗-states of radiative interfaces. There are no fundamental difference between ππ∗ → πσ∗ and ππ∗ → ππ∗ transitions for cases when an exciton hopes from one gate to another. The rates of such transitions depend only on an energy gap between states and a distance between gates. A circuit is highly sensitive to the choice of solvent which could rearrange its state structure thereby altering its behavior. According to the obtained results, non-adiabatic transfer can be considered as one of the possible ways for transmitting a signal between MLGs.

Keywords

Molecular logic gate
MLG
Rate constant
non-adiabatic transfer
the Bixon-Jortner-Plotnikov method

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.