Prediction of Diffusion Coefficient Through Machine Learning Based on Transition State Theory Descriptors

25 March 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nanoporous materials serve as very effective media for storing or separating small molecules. To design the best materials for a given application based on adsorption, one usually assesses the equilibrium performance by using key thermodynamic quantities such as Henry constants or adsorption loading values. To go beyond standard methodologies, we probe here the transport effects occurring in the material by studying the self-diffusion coefficients of xenon inside the nanopores of framework materials. We find good correlations between the diffusion coefficients and the pore aperture size, as well as other geometrical and energetic descriptors. We used extensive molecular dynamics simulations to calculate the diffusion coefficient of xenon in 4,873 MOFs from the CoREMOF 2019 database, the first large-scale database of transport properties published at this scale. Based on this data, we present a tool to quickly evaluate the diffusion energy barrier that proved to be very correlated to the diffusion rate. This descriptor, alongside other geometrical characterizations, were then used to build a machine learning model that can predict the xenon diffusion coefficients in MOFs. The final trained model is quite accurate and shows a root mean square error (RMSE) on the log_{10} of the diffusion coefficient equal to 0.25.

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.