Abstract
Catalysts are essential for sustainability because they decrease the energy and resource consumption in the production of high value-added products. The design of a novel catalyst is a challenging and expensive target, and a simplified methodology for catalyst development can trigger burgeoning progress in both academic and applied research. Here, we demonstrate a reaction network that autonomously yields the photoredoxcatalyst for transformation of the provided substrate under applied catalytic conditions. The system stems from the reversible condensation pathway leading to deazaoxaflavins, 2H-chromeno[2,3-d]pyrimidine synthetic analogs of flavins, with which they share photoorganocatalytic activity. We report on the photocatalytic activity of deazaoxaflavins and their covalently dynamic behavior. The reversibility principle allows for the exchange of one of the deazaoxaflavin constituents for a different moiety, thus leading to the adaptability of the catalyst. We argue that the observed phenomenon is of thermodynamic origin and thus can be applied to other photo/organocatalytic reactions, in which the combination of a suitable substrate and conditions are the governing principle for catalyst formation.
Supplementary materials
Title
Supplementary information file
Description
Methods, synthetic protocols, spectra, additional and supporting data.
Actions