Harnessing ultrasound-derived hydroxyl radicals for the selective oxidation of aldehyde functions

15 March 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ultrasonic irradiation holds potential for the selective oxidation of non-volatile organic substrates in the aqueous phase by harnessing hydroxyl radicals as chemical initiators. Here, a mechanistic description of hydroxyl radical-initiated glyoxal oxidation is constructed by gleaning insights from photolysis and radiation chemistry to explain the yields and kinetic trends for oxidation products. The mechanistic description and kinetic measurements reported herein reveal that increasing the formation rate of hydroxyl radicals by changing the ultrasound frequency increases both the rates of glyoxal consumption and the selectivity towards C2 acid products over those from C-C cleavage. Glyoxal consumption also occurs more rapidly and with greater selectivity towards C2 acids under acidic conditions, which favor the protonation of carboxylate intermediates into their less reactive acidic forms. Leveraging such pH and frequency effects is crucial to mitigating product degradation by secondary reactions with hydroxyl radicals and oxidation products (specifically H2O2 and •O2–). These findings demonstrate the potential of ultrasound as a driver for the selective oxidation of aldehyde functions to carboxylic acids, offering a sustainable route for converting biomass-derived platform molecules into valuable products.

Keywords

Biorefinery
Green chemistry
advanced oxidation
sonochemistry
gloxal oxidation
density functional theory
kinetic modeling

Supplementary materials

Title
Description
Actions
Title
Document S1
Description
Supplemental experimental and computational results, supplemental discussion, Sections S1-S11, Figures S1-S13, Tables S1-S6, Equations S1-S4, and supplemental references.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.