Integrating Genetic Algorithms and Language Models for Enhanced Enzyme Design

13 March 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Enzymes are molecular machines optimized by nature to allow otherwise impossible chemical processes to occur. Their design is a challenging task due to the complexity of the protein space and the intricate relationships between sequence, structure, and function. Recently, large language models (LLMs) have emerged as powerful tools for modeling and analyzing biological sequences, but their application to protein design is limited by the high cardinality of the protein space. This study introduces a framework that combines LLMs with genetic algorithms (GAs) to optimize enzymes. LLMs are trained on a large dataset of protein sequences to learn relationships between amino acid residues linked to structure and function. This knowledge is then leveraged by GAs to efficiently search for sequences with improved catalytic performance. We focused on two optmization tasks: improving the feasibility of biochemical reactions and increasing their turnover rate. Systematic evaluations on 105 biocatalytic reactions demonstrated that the LLM-GA framework generated mutants outperforming the wild-type enzymes in terms of feasibility in 90% of the instances. Further in-depth evaluation of seven reactions reveals the power of this methodology to make `the best of both worlds' and create mutants with structural features and flexibility comparable to the wild types. Our approach advances the state-of-the-art computational design of biocatalysts, ultimately opening opportunities for more sustainable chemical processes.

Keywords

Protein Language Model
Enzyme design
Protein optimization

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.