Abstract
A new topology previously unknown in metal–organic frameworks (MOFs) provides an important clue to uncovering a new series of polyhedral MOFs. We report a novel MOF crystallized in a parsimonious mep topology based on Frank–Kasper (FK) polyhedra. The distribution of angles in a tetrahedral arrangement (T-O-T) is crucial for the formation of FK polyhedra in mep topology. This finding led us to investigate the T-O-T angle distribution in related zeolites and zeolitic imidazolate frameworks (ZIFs). Unlike zeolites, it is extremely difficult to achieve high T-O-T angles in ZIFs, which prevents the formation of some FK topologies. Density functional theory (DFT) total energy calculations support a correlation between T-O-T angles and the feasibility of new tetrahedron-based FK frameworks. This result may lead to innovative ways of accessing new cellular topologies by simple chemical tweaking of T-O-T angles.
Supplementary materials
Title
Supplementary Information
Description
Supplementary Information
Actions
Title
Crystallographic Information Files
Description
Crystallographic Information Files for FKMOFs
Actions
Title
Models for Hypothetical FKMOFs
Description
Models for Hypothetical FKMOFs as CIFs
Actions