Advancements in Hand-Drawn Chemical Structure Recognition through an Enhanced DECIMER Architecture

11 March 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Accurate recognition of hand-drawn chemical structures is crucial for digitising hand-written chemical information found in traditional laboratory notebooks or for facilitating stylus-based structure entry on tablets or smartphones. However, the inherent variability in hand-drawn structures poses challenges for existing Optical Chemical Structure Recognition (OCSR) software. To address this, we present an enhanced Deep lEarning for Chemical ImagE Recognition (DECIMER) architecture that leverages a combination of Convolutional Neural Networks (CNNs) and Transformers to improve the recognition of hand-drawn chemical structures. The model incorporates an EfficientNetV2 CNN encoder that extracts features from hand-drawn images, followed by a Transformer decoder that converts the extracted features into Simplified Molecular Input Line Entry System (SMILES) strings. Our models were trained using synthetic hand-drawn images generated by RanDepict, a tool for depicting chemical structures with different style elements. To evaluate the model's performance, a benchmark was performed using a real-world dataset of hand-drawn chemical structures. The results indicate that our improved DECIMER architecture exhibits a significantly enhanced recognition accuracy compared to other approaches.

Keywords

OCSR
DECIMER
Hand-drawn chemical structures
Optical Chemical Structure Recognition
Transformer

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.