Abstract
Force field (FF) based molecular modeling is an often used method to investigate and study structural and dynamic properties of (bio-)chemical substances and systems. When such a system is modeled or refined, the force field parameters need to be adjusted. This force field parameter optimization can be a tedious task and is always a trade-off in terms of errors regarding the targeted properties. To better control the balance of various properties’ errors, in this study we introduce weighting factors for the optimization objectives. Different weighting strategies are compared to fine-tune the balance between bulk-phase density and relative conformational energies (RCE), using n-octane as a representative system. Additionally, a non-linear projection of the individual property-specific parts of the optimized loss function is deployed to further improve the balance between them. The results show that the overall error is reduced. One interesting outcome is a large variety in the resulting optimized force field parameters (FFParams) and corresponding errors, suggesting that the optimization landscape is multi-modal and very dependent on the weighting factor setup. We conclude that adjusting the weighting factors can be a very important feature to lower the overall error in the FF optimization procedure, giving researchers the possibility to fine-tune their FFs.
Supplementary weblinks
Title
tuning_weighting-factors_objective-function
Description
FFLOW Optimization tool (Python project) and input data used for manuscript
Actions
View