Abstract
Dye-sensitized photoelectrochemical cells can enable the production of molecules currently accessible through energetically demanding syntheses. Copper(I)-based dyes represent electronically tunable charge transfer and separation systems. Herein, we report a Cu(I)-bisdiimine donor-chromophore-acceptor dye with an absorbance in the visible part of the solar spectrum composed of a phenothiazine electron donor, and dipyrido[3,2-a:2′,3′-c]phenazine electron acceptor. This complex is incorporated onto a zinc oxide nanowire semiconductor surface effectively forming a photoanode that is characterized spectroscopically and electrochemically. We investigate the photo-oxidation of hydroquinone, and the photosensitization of 2,2,6,6-tetramethylpiperidine-1-oxyl and N-hydroxyphthalimide for the oxidation of furfuryl alcohol to furfuraldehyde, resulting in near quantitative conversions, with poor selectivity to the alcohol.
Supplementary materials
Title
Supporting Information
Description
Materials, synthetic details, device fabrication, catalysis methods, NMR data, ESI-MS, DFT calculation details
Actions