X-ray switch for rare earth element adsorption to a liquid interface

07 March 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ions at liquid surfaces and interfaces influence many scientific and technological areas, including molecular and nanoparticle assembly for energy and separations processes. Controlled transport of ions between interfacial and bulk liquids can lead to triggering ion-induced interfacial phenomena. Here, we show that X-ray exposure alters the competitive equilibrium of rare earth elements bound to chelating ligands in bulk water and to insoluble monolayers at the water surface. Controlling the X-ray exposure leads to reversible adsorption of rare earth trivalent ions to the liquid surface. Evidence for the exposure-induced temporal variations in the ion surface density is provided by synchrotron X-ray fluorescence near total reflection (XFNTR) measurements. Varying the X-ray penetration depth from 10 nm to 2.8 µm leads to a controlled exposure of either the surface region alone or the surface monolayer plus dissolved chelating ligands and bulk water. This separation of surface and bulk processes helped identify the role of aqueous radiolysis in the adsorption cycle. Comparison of different chelates identified amine binding sites as a contributor to the cycling mechanism. The primary molecules utilized for these studies – chelating ligand DTPA and organophosphoric acid extractant DHDP – are like those used in the separation of rare earth elements from ores and in the reprocessing of nuclear fuel. The observed reversible cycling of ion adsorption may provide an opportunity for further control over these processes and enhanced separation.

Keywords

chemical separation
X-ray exposure
liquid interfaces
lanthanides
reversible adsorption

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.