Complexation and Disproportionation of Group 4 Metal (Alkoxy) Halides with Phosphine Oxides

06 March 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Group 4 Lewis acids are well-known catalysts and precursors for (non-aqueous) sol-gel chemistry. Titanium, zirconium and hafnium halides, and alkoxy halides are precursors for the controlled synthesis of nanocrystals, often in the presence of Lewis base. Here, we investigate the interaction of Lewis bases with the tetrahalides (MX4 X = Cl, Br) and metal alkoxy halides (MXx(OR)4-x, x = 1-3, R = OiPr, OtBu). The tetrahalides yield the expected Lewis acid-base adducts MX4L2 (L = tetrahydrofuran or phosphine oxide). The mixed alkoxy halides react with Lewis bases in a more complex way. 31P NMR spectroscopy reveals that excess of phosphine oxide yields predominantly the complexation product, while a (sub)stoichiometric amount of phosphine oxide causes disproportionation of the MXx(OR)4-x species into MXx+1(OR)3-x and MXx-1(OR)5-x. The combination of complexation and disproportionation yields an atypical Job plot. In the case of zirconium isopropoxy chlorides, we fitted the concentration of all observed species and extracted thermodynamic descriptors from the Job plot. The complexation equilibrium constant decreases in the series: ZrCl3(OiPr) > ZrCl2(OiPr)2 >> ZrCl(OiPr)3, while the disproportionation equilibrium constant follows the opposite trend. Using calculations at the DFT level of theory, we show that disproportionation is driven by the more energetically favorable Lewis acid-base complex formed with the more acidic species. We also gain more insight into the isomerism of the complexes. The disproportionation reaction turns out to be a general phenomenon, for titanium, zirconium and hafnium, for chlorides and bromides, and for iso-propoxides and tert-butoxides.

Keywords

Lewis Acid-Base
Metal alkoxy halides
Crystal structures
Quantitative fitting
NMR
DFT

Supplementary materials

Title
Description
Actions
Title
DFT structures
Description
Optimized DFT structures
Actions
Title
Crystals Structures
Description
Updated resolved single crystal structures. CIF and CIF checks files.
Actions
Title
Supporting Information
Description
Crystallographic data of previously unreported single crystals and their characterization with 1H NMR and 31P NMR, PXRD, IR and TGA. 1H NMR and 31P NMR spectra of metal complexes and detailed description of job plot analysis.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.