Abstract
The elimination of per- and polyfluoroalkyl substances (PFAS) in water continues to garner significant attention due to their enduring presence in the environment and associated health concerns. The emergence of advanced reduction processes (ARPs) holds significant promise in reducing persistent PFAS in water, primarily due to its ability to produce short-lived yet highly reductive hydrated electrons. This concise review offers insights into the latest developments in ARP-based PFAS degradation, encompassing both experimental and theoretical investigations conducted within the last 2 - 5 years. We conclude with an outlook on potential research avenues in this dynamic field and suggest future experimental and computational strategies to enhance ARP capabilities.