Dilithium phthalocyanine - A Single Ion Transport Interfacial layer for Solid-State Lithium Batteries

04 March 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

All-solid-state batteries possess several advantages including high safety, flexibility to use high-capacity metal anodes and are projected to be the next generation energy storage devices. Garnet-type cubic Li7La3Zr2O12 (LLZO) solid electrolyte is of particular interest due to its high ionic conductivity under ambient conditions and compatibility with Li metal. However, large electrode/electrolyte interfacial resistance constraints their development. Herein, the use of a highly lithium ion conducting dilithium phthalocyanine (Li2Pc) as an interlayer is proposed to effectively suppress the high impedance at the interface thus improving the electrode-electrolyte contact. Fast Li+ mobility and high dielectric constant of dilithium phthalocyanine enhance the kinetics of Li+ transport across the interface. A significant reduction in overpotential and very stable stripping/plating cycling are observed in lithium symmetric cells upon introducing Li2Pc interlayer as compared to the use of bare tantalum doped lithium lanthanum zirconium oxide (LLZTO) electrolyte. Cells comprising interlayer-modified Li|LLZTO|LiFePO4 show high capacity with excellent cycling and rate capability. The performance of full cells using lithiated graphite and lithium titanate anodes has also been evaluated. This study presents a promising application of garnet electrolytes towards the advancement of solid-state lithium batteries.

Keywords

LLZTO
Dilithium phthalocyanine
All-solid-state-batteries
Interfacial modification

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Contains XRD, XPS and electrochemical measurements
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.